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then p, q, r, s form what may be called a pseudo-linear statistical quadruple,
i.e., a quadruple which cannot be ordered by means of the between-relation
though for each three of the four points one lies between the other two.

If a statistical T-metric S metrized by means of jp contains more than
four points, then by virtue of the properties of betweenness this relation
can be used to order S. Moreover, the other ideas of metric geometry
(convexity, geodesics, etc.) can be applied.
The three principal applications of statistical metrics are to macroscopic,

microscopic and physiological spatial measurements. Statistical metrics
are designed to provide us (1) with a method removing conceptual diffi-
culties from microscopic physics and transferring them into the underlying
geometry, (2) with a treatment of thresholds of spatial sensation elimi-
nating the intrinsic paradoxes of the classical theory. For a given point
po the number II(0; Po, q) considered as a function of the point q indicates
the probability that q cannot be distinguished from Po. The study of
this function should replace the attempt to determine a definite set of
points q which cannot be distinguished from po. This function could also
be used advantageously instead of a relation of physical identity for which,
as Poincare emphasized on several occasions, we always have triples
p, q, r for which

p = q, q = r, and p 0 r.

Experiments indicate that q sometimes can and sometimes cannot be
distinguished from po. Hence, the adequate description of the situation
seems to arise from counting the relative frequency of these occurrences.
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1. Introduction.-Frequently in modern mathematics there occur
phenomena of "naturality": a "natural" isomorphism between two groups
or between two complexes, a "natural" homeomorphism of two spaces
and the like. We here propose a precise definition of the "naturality"
of such correspondences, as a basis for an appropriate general theory. In
this preliminary report we restrict ourselves to the natural isomorphisms
of group theory; with this limitation we can present the basic concepts
of our theory without developing the axiomatic approach necessary for a
general treatment applicable to various branches of mathematics.
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Properties of character groups (see the definitions in § 5 below) may
serve to illustrate the ideas involved. Thus, it is often asserted that the
character group of a finite group G is isomorphic to the group itself, but
not in a "natural" way. Specifically, if G is cyclic of prime order p, there
is for each generator of G an isomorphism of G to its character group, so
that the proof furnishes p - 1 such isomorphisms, no one of which is in
any way distinguished from its fellows. However, the proof that the
character group of the character group of G is isomorphic to G itself is
considered "natural," because it furnishes for each G a unique isomorphism,
not dependent on any choice of generators.
To give these statements a clear mathematical meaning, we shall regard

the character group Ch(G) of G as a function of a variable group G, together
with a prescription which assigns to any homomorphism y of G into a
second group G',

-y:G +GI

the induced homomorphism (see (5) below)

Ch(y):Ch(G') -- Ch(G).

The functions Ch(G) and Ch(Qy) jointly form what we shall call a "functor";
in this case, a "contravariant" one, because the mapping Ch(Qy) works in
a direction opposite to that of 'y. A natural isomorphism between two
functions of groups will be an isomorphism which commutes properly with
the induced mappings of the functors.
With our description of a natural isomorphism, practically all the general

isomorphisms obtained in group theory and its applications (homology
theory, Galois theory, etc.) can be shown to be "natural." This results
in added clarity in such situations. Furthermore, there are definite proofs
where the naturality of an isomorphism is needed, especially when a
passage to the limit is involved. In fact, our condition (E2) below appears
in the definition of the isomorphism of two direct or two inverse systems
of groups.1

2. Functors.-The definition of a functor will be given for the typical
case of a functor T which depends on two groups as arguments, and is
covariant in the first argument and contravariant in the second. Such a
functor is determined by two functions. The group function determines
for each pair of topological groups G and H (contained in a given legitimate
set of groups) another group T(G, H). The mapping function determines
for each pair of homomorphisms2 y: G1 -* G2 and t:HI -- 12 a homo-
morphism T(-y, -q), such that

T(Qy, 7n): T(G1, H2) -- T(G2, H1).
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We require that T(y, n) be the identity isomorphism whenever -y and -1
are identities, and that, whenever the products 7271 and 12711 are defined,

T(727y1, M7271) = T(Q2, qi)T(Ty1, 712). (2)
Some functors will be defined only for special types of groups (e.g., for
abelian groups) or for special types of homomorphisms (e.g., for homo-
morphisms "onto").

If -y and 77 are both isomorphisms,3 it follows from these conditions that
T(y, q) is also an isomorphism. Consequently, if the groups G1 and G2
and the groups H1 and H2 are isomorphic, the functor T gives rise to iso-
morphic groups T(G1, H1) and T(G2, H2).

3. Exampks.-The direct product G X H of two groups may be re-
garded as the group function of a functor. The corresponding mapping
function specifies, for each pair of homomorphisms -y: G1 -+ G2 and 7:H1 -*

H2, an induced homomorphism y X 1, defined for every element (ga, hi)
in G1 X H1 as

[y X 1](gi, hi) = (ygi, 7hl).
Then

y X 71: G1 X H1 -> G2 X H2, (3)
and, whenever 7271 and 72711 are defined, one has

(7271) X (72771) = (72 X 712) (71 X 71). (4)

Except for the absence of contravariance, these conditions are parallel
to (1) and (2), hence G X H, y X 71 define a functor, covariant in both
G and H.

Whitney's tensor product4 GOH of two discrete groups" G and H is the
group function of a functor. The elements of this group are all finite
sums Zgj 0 h, of formal products gi 0 h,; the group operation is the obvious
addition, and the relations are g O (h + h') = g o h + go h' (g + g') o h =
goh + g'oh. Given two homomorphisms y:G1 -- G2 and 7:H, -+ H2,
there is an induced homomorphism 071 of G1 0 H1 into G2 0 H2, defined
for any generator gi 0 hi of G1 0 H1 as

[70 7] (g, o hi) = (-ygi) O (71hl) e G2 oH2.
Formulae (3) and (4), with the cross replaced by the circle, again hold,
so that G O H, 70 71 determine a functor of discrete groups, covariant in
both arguments.

In a similar fashion, the free product of two groups leads to a functor.
An important functor is given by the group of all homomorphisms 4 of

a fixed locally compact topological abelian group G into another topological
abelian group H. The sum of two such homomorphisms 4i and 02 is de-
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fined for each g e G by setting (41 + +2)(g) = 41(g) + +2(g). Under this
operation, all q:G -> H constitute a group Homr(G, H); it carries an ap-
propriate topology, the description of which we omit. For given ' GI
G2 and -q:Hi - H2 and for each 4-e Hom(G2, H1) we have

G- G2 H1 H2.
Consequently we define Hom('y, ')() = fr/ y, and verify that

Hom(,y, q) :Hom(G2, H1) --* Homr(GI, H2),

Hom(y2y1, -72l11) = HoMr(n), '72) Horn(y2, ll).

Clearly when y and X are identity mappings of G and H the induced map-
ping Hom(,y, q) is the identity mapping of Hom(G, H) on itself. Hence
the functions Hom(G, H) and Hom('y, ,q) determine for abelian groups a
functor Hom, covariant in H and contravariant in G.
The special case when H is the group P of reals modulo 1 furnishes the

character group,

Ch(G) = Hom(G, P), Ch(-y) = Hom(-y, e)

where e is the identity mapping of P on itself. Therefore the character
group is a contravariant functor, defined for abelian groups. Explicitly,
if we express the result x(g) of applying the character x to the element
g e G as the value (a real number modulo 1) of the bilinear form (g, x),
the definition of Ch(7y) can be written as

(g, Ch(7I)x') = (yg, x'), g e G, X' e Ch(G'). (5)

4. Equivalence of Functors.-Let T and S be two functors which are,
say, both covariant in the variable G and contravariant in H. Suppose
that for each pair of groups G and H we are given a homophorism

r(G, H):T(G, H) -* S(G, H).

We say that r establishes a natural equivalence of the functor T to the
functor S and that T is naturally equivalent to S (in symbols, r: T < S)
whenever

(El) Each r(G, H) is a bicontinuous isomorphism of T(G, H) onto
S(G, H);

(E2) For each y:G, -+ G2and 21:H, -+ H2,
-r(G2, H1)T(y, r) = S(,y1)r (G1, H2).

The first requirement insures the term-by-term isomorphism of the two
group functions T(G, H) and S(G, H), while the second requirement is
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precisely the "naturality" condition. It can be shown that the condition
(E2) is implied by two special cases; the case when tq is an identity, and
the case when -y is an identity.

This relation of natural equivalence between functors is reflexive, sym-
metric and transitive. In many cases we dispense with condition (El),
and obtain a more general concept of a "transformation" of a functor T
into a functor S.

5. Examples of Natural Equivalence.-The well-known isomorphism

G '_' Ch(Ch(G)) (6)

for locally compact abelian groups, can be regarded as an equivalence of
functors, and is in this sense natural. The right-hand side of (6) suggests
the covariant functor, Ch2, defined by iteration of the functor Ch, as

Ch2(G) = Ch(Ch(G)), Ch2(y) = Ch(Ch(Q)).
The left-hand side of (6) suggests the identity functor, I,

I(G) = G, I(z) = 7.

The bilinear form (g, x) = X(g) determines to each character x e Ch(G)
and each g e G a real number modulo 1; similarly the form (x, h) = h(x)
is defined for each h e Ch2(G). The form (g, x), regarded as a function of
x for fixed g, is a character h in Ch2(G) which we call [r(G)]g. Explicitly,
this definition of X reads

(x, T(G)g) = (g, x), g e G, x e Ch(G).
The validity of condition (El) for x(G) is the basic theorem of character
theory. The condition (E2) asserts that in the diagram

r(G)
G - )Ch2(G)
|Y ICh2(,y)

'r(G') j
G' y~Ch2(G')

the two paths leading from G to Ch2(G') have the same effect, or that, for
each g e G, both elements r(G')7yg and Ch2(y)T(G)g are identical as elements
of Ch2(G'). This means that, for each x e Ch(G'), one should have

(x', 'r(G')-yg) = (x', Ch2(y)r(G)g).
By the definition of r, the expression on the left is simply (yg, x'). By
succetssive application to the expression on the right of the definitions of
Ch, T and Ch, we obtain

(x', Ch2(y)r(G)g) = (Ch(y)x', 'r(G)g) = (g, Ch(y)x') = (7g,o X').
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The identity of these results shows that we do have a natural equivalence
'r(G):G ( ) Ch2(G).
When G is finite, the isomorphism G -* Ch G cannot be "natural" ac-

cording to our definitions, for the simple reason that the functor I on the
left is covariant, while the functor Ch on the right is contravariant.
As other examples of equivalences between functors, we may cite the

usual isomorphisms which give the associative and commutative laws for
the direct product, the tensor product and the free product. Various
distributive laws, such as

(G1 X G2) oH _ (G1o H) X (G2oH),

Hom(Gi X G2, H) _ Hom(Gi, H) X Hom(G2, H),

when established with the obvious isomorphisms, are in fact equivalences
between functors.
A less obvious relation between the tensor product and the functor

"Hom" is6

Homr(G, Hom (H, K)) - Homr(G o H, K), (7)
where G and H are discrete abelian groups, K a topological abelian group.
This isomorphism is obtained by a correspondence r(G, H, K) which
specifies for each element 4 e Hom(G, Hom(H, K)) a corresponding homo-
morphism in Homr(G o H, K), defined for any generator g o h of G a Has

[r(G, H, K)] (4)(g o h) = [+(g)](h) in K.

One may show that r does give an isomorphism, bicontinuous in the ap-
propriate topologies. Both sides of (7) may be treated as the group
functions of functors which are obtained by composition from "Hom"
and "a." The corresponding mapping functions, for given homomorphisms

,Y:GI --G2, rn:Hi -+H2, K:K, -> K2,

are defined by a parallel composition as

Ho0M(y, Ho0M(r, K)), HoMr(y o r, K).

Both functors are contravariant in G and H, covariant in K.
The naturality condition for the isomorphism r reads

r(Gi, H1, K2) Hom(y, Hom(lq, K)) = Hom(y a X, K)T(G2, H2, K1).

Both sides, when applied to an element k e Homr(G2, Hom(H2, K1) yield
a homomorphism in Hom(Gi a H1, K2). If each of these homomorphisms
is applied to a typical generator g, O h, of the tensor product G1 a H1,
straightforward application of the relevant definitions shows that the same
element of K2 is obtained in both cases; namely, K4 [qs(y(g1))](,(hi)) } .
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One may also see directly that this expression represents the only way of
constructing an element of K2 from the elements g, and hA and the mappings
K, 4, y and -q.
The natural isomo;-phism (7) has some interesting consequences. If

K is taken to be the group P of real numbers modulo 1, Hom(H, K) be-
comes the character group Ch(I), and the formula may be written as

Hom(G, ChH) '' Ch(GoH).

Applying the functor Ch to both sides and using the natural equivalence
of Ch2 and I, we obtain the equivalence

GoH ChHom(G, Ch H).

Since this is "natural," this could be used as a definition of the tensor
product G 01.

6. Generalizations.-With the appropriate definition of a normal sub-
functor S of a functor T one can construct a quotient functor T/S, whose
group function has as its values quotient groups (i.e., factor groups).
With this operation, all the standard constructions on groups may be
represented as group functions of suitable functors.
An inspection of the concept of a functor and of a natural equivalence

shows that they may be applied not only to groups with their homomor-
phisms, but also to topological spaces with their continuous trappings, to
simplicial complexes with their simplicial transformations, and to Banach
spaces with their linear transformations. These and similar applications
can all be embodied in a suitable axiomatic theory. The resulting much
wider concept of naturality, as an equivalence between functors, will be
studied in a subsequent paper.
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